Question Number	Answer		Mark
1(a)	Operable circuit with bulb and power supply variable to 12 V (ignore meters)	(1)	
1(u)	Ammeter correctly positioned	(1)	
	Voltmeter correctly positioned	(1)	
	volumeter correctly positioned	(1)	3
	(voltmeter may be across ammeter as well, or whole circuit – but not across		C
	any additional resistive components such as a variable resistor)		
1(b)(i)	The gradient of this graph is the rate of change of current with p.d.	(1)	
	Resistance is the ratio of nd/current		
	Or It is calculated using a value of $\mathbf{pd} \div$ the corresponding value of current		
	Or it is calculated using a value of part in corresponding value of current \mathbf{Or} it isn't a straight line so the gradient is not R	(1)	2
	of it isn't a straight line so the gradient is not R	(1)	-
	(credit <i>R</i> not constant, so value at 6 V isn't applicable to other voltages)		
1(b)(ii)	Use of $R = V/I$	(1)	
	$R = 4.76 \ \Omega$	(1)	2
	Example of calculation		
	R = 6.00 V / 1.26 A		
	$R = 4.76 \Omega$		
*1(c)	(OWC – Work must be clear and organised in a logical manner using		
-(-)	technical wording where appropriate)		
	The resistance increases	(1)	
	(Because) the temperature increases (accept heats up)	(1)	
	Increasing the amplitude of the oscillation of the lattice ions	(1)	
	Leading to more (frequent) collisions of electrons with lattice ions	(1)	4
	Allow converse marks for an explanation explicitly based on decreasing		
	potential difference		
	Total for question		11

Question Number	Answer	Mark
2(a)	Resistance (of a fluid) to flow (1)	1
2(b)(i)	Rate of flow is inversely proportional to the viscosity Or rate of flow decreases with increasing viscosity (and vice versa) (1) The time to empty the cup is proportional to the viscosity	
	Or the time to empty the cup is inversely proportional to the flow rate Or the time to empty the cup decreases as viscosity decreases Or the time to empty the cup decreases as the flow rate increases (1) (Accept converse explanation in terms of time increasing for MP2)	2
2(b)(ii)	The temperature was greater on the first day Or the temperature was lower (on the second day) Or the paint/room was colder (on the second day) Or the time is greater when the temperature is lower Or the time is lower when the temperature is greater (1)	1
2(c)	Error 1(1)Correct outcome from error 1(1)Error 2(1)Correct outcome from error 2(1)(Do not credit descriptions of changing temperature)Examples of answer Reaction time Measured time greater than actual timeInitial paint level in cup could be higher/lower than the level Time would be greater /lessHole/opening becomes blocked Time to drain would be greaterPaint left in cup after pouring Or paint spilt Reduces time to drain	
	Total for Question	4

Question	Answer	Mark
Number		
3 (a)	Resistivity is a constant for the material / metal	
	OP resistivity depends on / is a property of the material / metal	(1)
	or resistivity depends on 7 is a property of the material 7 metal	(.)
	Resistance depends on (resistivity and) length / area	
	/dimensions	
	$OP P = \alpha I/A$ with terms defined (do not credit rearranged	(1)
	or <i>x</i> = <i>p</i> / <i>A</i> with terms defined (do not credit realizinged	
	equation)	
3(b)	Correct substitution into the $R = \rho I/A$ formula	(1)
	$R = 0.0085 \Omega$	(1)
	N = 0.0000 32	
	Lue applies. Common error is to rearrange eqn and confuse R	
	and ρ gives answer 3.4 × 10 ⁻¹⁴ scores zero]	
	Example of calculation	
	$B = (1.7 \times 10^{-8} \text{ Om } \times 0.5 \text{ m}) / 1 \times 10^{-6} \text{ m}^2$	
	$K = (1.7 \times 10^{-} \Omega 111 \times 0.3 111) / 1 \times 10^{-} 111$	
	$K = 0.0085 \Omega$	
12	Total for question	4

Question	Answer	Mark
number		
4(a)	Use of V=IR	1
	V = 3.0 V	1
(b)	pd across 30 Ω resistor = 6.0 V ecf their answer (a)	1
	$I_2 = 6.0/30 = 0.20 \text{ A}$	1
(c)	$l_1 = 0.60 - 0.20 = 0.40 \text{ A}$	1
	$R = 15 \Omega$ full ecf their answer for I_2 and their V across 30 Ω	1
	Total for question	6

Question	Answer		Mark
Number			
5(a)	(sound waves travel as) longitudinal waves		
	Or		
	(Air molecules) vibrate parallel to direction of travel of wave	(1)	
	(sound waves travel as) a series of compressions and rarefactions Or (sound		
	waves travel as) areas of high and low pressure	(1)	
	The idea that these vibrations create a pressure/force/stress/strain on the film		
	Or The idea that these compressions/rarefactions create a		
	pressure/force/stress/strain on the film	(1)	
	This pressure/force/stress/strain generates a potential difference		
	(accept idea that vibration/pressure/force/stress/strain causes redistribution of		
	charge within crystal)	(1)	4
5(b)	Thin film is flowible / lightweight	(1)	
5(D)	Thin thin is flexible / lightweight	(1)	
	The idea that there is not much energy in sound	(1)	
	The face that there is not much chergy in sound	(1)	
	Large area gathers more sound (energy)		
	Or Large area generates more power/current/pd	(1)	3
5(c)	Use of $P = E/t$ with any time, energy in J or kJ	(1)	
	Conversion of kJ \rightarrow J and correct time in s (36000 s)	(1)	
	$P = 0.56 \text{ W} (\text{accept J s}^{-1})$	(1)	3
	Example of calculation		
	Power = $20000 \text{ J} / 10 \times 3600 \text{ s}$		
	Power = 0.56 W		
5(d)	ONE Disadvantage		
	Expensive,		
	Not washable		
	Only works with (loud) noise		
	Long time to charge a phone		
	Low output power	(1)	
	ONE Advantage		
	Free source of energy		
	Lower/zero running cost		
	Portable		
	Can be used when away from mains electricity	(1)	2
	[Credit should be given for any reasonable correct physics point but not for		
	generalised comments such as 'good for the planet' 'environmentally		
			10
	i otal for question		12